Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 17(1): 70, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475810

RESUMO

OBJECTIVE: In this study, we sought to determine the types and prevalence of antimicrobial resistance determinants (ARDs) in Burkholderia spp. strains using the Antimicrobial Resistance Determinant Microarray (ARDM). RESULTS: Whole genome amplicons from 22 B. mallei (BM) and 37 B. pseudomallei (BP) isolates were tested for > 500 ARDs using ARDM v.3.1. ARDM detected the following Burkholderia spp.-derived genes, aac(6), blaBP/MBL-3, blaABPS, penA-BP, and qacE, in both BM and BP while blaBP/MBL-1, macB, blaOXA-42/43 and penA-BC were observed in BP only. The method of denaturing template for whole genome amplification greatly affected the numbers and types of genes detected by the ARDM. BlaTEM was detected in nearly a third of BM and BP amplicons derived from thermally, but not chemically denatured templates. BlaTEM results were confirmed by PCR, with 81% concordance between methods. Sequences from 414-nt PCR amplicons (13 preparations) were 100% identical to the Klebsiella pneumoniae reference gene. Although blaTEM sequences have been observed in B. glumae, B. cepacia, and other undefined Burkholderia strains, this is the first report of such sequences in BM/BP/B. thailandensis (BT) clade. These results highlight the importance of sample preparation in achieving adequate genome coverage in methods requiring untargeted amplification before analysis.


Assuntos
Anti-Infecciosos , Burkholderia mallei , Burkholderia pseudomallei , Burkholderia , Síndrome do Desconforto Respiratório , Humanos , Burkholderia mallei/genética , Burkholderia/genética
3.
Synth Biol (Oxf) ; 8(1): ysad014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022744

RESUMO

Reproducibility has been identified as an outstanding challenge in science, and the field of synthetic biology is no exception. Meeting this challenge is critical to allow the transformative technological capabilities emerging from this field to reach their full potential to benefit the society. We discuss the current state of reproducibility in synthetic biology and how improvements can address some of the central shortcomings in the field. We argue that the successful adoption of reproducibility as a routine aspect of research and development requires commitment spanning researchers and relevant institutions via education, incentivization and investment in related infrastructure. The urgency of this topic pervades synthetic biology as it strives to advance fundamental insights and unlock new capabilities for safe, secure and scalable applications of biotechnology. Graphical Abstract.

4.
Mol Syst Biol ; 19(4): e10523, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36847213

RESUMO

Vibrio natriegens is a Gram-negative bacterium with an exceptional growth rate that has the potential to become a standard biotechnological host for laboratory and industrial bioproduction. Despite this burgeoning interest, the current lack of organism-specific qualitative and quantitative computational tools has hampered the community's ability to rationally engineer this bacterium. In this study, we present the first genome-scale metabolic model (GSMM) of V. natriegens. The GSMM (iLC858) was developed using an automated draft assembly and extensive manual curation and was validated by comparing predicted yields, central metabolic fluxes, viable carbon substrates, and essential genes with empirical data. Mass spectrometry-based proteomics data confirmed the translation of at least 76% of the enzyme-encoding genes predicted to be expressed by the model during aerobic growth in a minimal medium. iLC858 was subsequently used to carry out a metabolic comparison between the model organism Escherichia coli and V. natriegens, leading to an analysis of the model architecture of V. natriegens' respiratory and ATP-generating system and the discovery of a role for a sodium-dependent oxaloacetate decarboxylase pump. The proteomics data were further used to investigate additional halophilic adaptations of V. natriegens. Finally, iLC858 was utilized to create a Resource Balance Analysis model to study the allocation of carbon resources. Taken together, the models presented provide useful computational tools to guide metabolic engineering efforts in V. natriegens.


Assuntos
Vibrio , Vibrio/genética , Vibrio/metabolismo , Carbono/metabolismo , Alocação de Recursos
5.
Front Microbiol ; 13: 1059695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532481

RESUMO

Introduction: In spite of promising medical, sociological, and engineering strategies and interventions to reduce the burden of disease, malaria remains a source of significant morbidity and mortality, especially among children in sub-Saharan Africa. In particular, progress in the development and administration of chemotherapeutic agents is threatened by evolved resistance to most of the antimalarials currently in use, including artemisinins. Methods: This study analyzed the prevalence of mutations associated with antimalarial resistance in Plasmodium falciparum from 95 clinical samples collected from individuals with clinically confirmed malaria at a hospital in Bo, Sierra Leone between May 2017 and December 2018. The combination of polymerase chain reaction amplification and subsequent high throughput DNA sequencing was used to determine the presence of resistance-associated mutations in five P. falciparum genes - pfcrt, pfmdr1, pfdhfr, pfdhps and pfkelch13. The geographic origin of parasites was assigned using mitochondrial sequences. Results: Relevant mutations were detected in the pfcrt (22%), pfmdr1 (>58%), pfdhfr (100%) and pfdhps (>80%) genes while no resistance-associated mutations were found in the pfkelch13 gene. The mitochondrial barcodes were consistent with a West African parasite origin with one exception indicating an isolate imported from East Africa. Discussion: Detection of the pfmdr1 NFSND haplotype in 50% of the samples indicated the increasing prevalence of strains with elevated tolerance to artemeter + lumefantrine (AL) threatening the combination currently used to treat uncomplicated malaria in Sierra Leone. The frequency of mutations linked to resistance to antifolates suggests widespread resistance to the drug combination used for intermittent preventive treatment during pregnancy.

6.
J Am Chem Soc ; 143(10): 4005-4016, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33673734

RESUMO

Melanin is a ubiquitous natural pigment found in a diverse array of organisms. Allomelanin is a class of nitrogen-free melanin often found in fungi. Herein, we find artificial allomelanin analogues exhibit high intrinsic microporosity and describe an approach for further increasing and tuning that porosity. Notably, the synthetic method involves an oxidative polymerization of 1,8-DHN in water, negating the need for multiple complex templating steps and avoiding expensive or complex chemical precursors. The well-defined morphologies of these nanomaterials were elucidated by a combination of electron microscopy and scattering methods, yielding to high-resolution 3D reconstruction based on small-angle X-ray scattering (SAXS) results. Synthetic allomelanin nanoparticles exhibit high BET areas, up to 860 m2/g, and are capable of ammonia capture up to 17.0 mmol/g at 1 bar. In addition, these nanomaterials can adsorb nerve agent simulants in solution and as a coating on fabrics with high breathability where they prevent breakthrough. We also confirmed that naturally derived fungal melanin can adsorb nerve gas simulants in solution efficiently despite lower porosity than synthetic analogues. Our approach inspires further analysis of yet to be discovered biological materials of this class where melanins with intrinsic microporosity may be linked to evolutionary advantages in relevant organisms and may in turn inspire the design of new high surface area materials.


Assuntos
Biopolímeros/química , Melaninas/química , Adsorção , Biopolímeros/metabolismo , Fungos/metabolismo , Melaninas/metabolismo , Nanopartículas/química , Naftóis/química , Naftóis/metabolismo , Paraoxon/química , Paraoxon/metabolismo , Porosidade , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824772

RESUMO

Infectious diarrhea affects over four billion individuals annually and causes over a million deaths each year. Though not typically prescribed for treatment of uncomplicated diarrheal disease, antimicrobials serve as a critical part of the armamentarium used to treat severe or persistent cases. Due to widespread over- and misuse of antimicrobials, there has been an alarming increase in global resistance, for which a standardized methodology for geographic surveillance would be highly beneficial. To demonstrate that a standardized methodology could be used to provide molecular surveillance of antimicrobial resistance (AMR) genes, we initiated a pilot study to test 130 diarrheal pathogens (Campylobacter spp., Escherichia coli, Salmonella, and Shigella spp.) from the USA, Peru, Egypt, Cambodia, and Kenya for the presence/absence of over 200 AMR determinants. We detected a total of 55 different determinants conferring resistance to ten different categories of antimicrobials: genes detected in ≥ 25 samples included blaTEM, tet(A), tet(B), mac(A), mac(B), aadA1/A2, strA, strB, sul1, sul2, qacEΔ1, cmr, and dfrA1. The number of determinants per strain ranged from none (several Campylobacter spp. strains) to sixteen, with isolates from Egypt harboring a wider variety and greater number of genes per isolate than other sites. Two samples harbored carbapenemase genes, blaOXA-48 or blaNDM. Genes conferring resistance to azithromycin (ere(A), mph(A)/mph(K), erm(B)), a first-line therapeutic for severe diarrhea, were detected in over 10% of all Enterobacteriaceae tested: these included >25% of the Enterobacteriaceae from Egypt and Kenya. Forty-six percent of the Egyptian Enterobacteriaceae harbored genes encoding CTX-M-1 or CTX-M-9 families of extended-spectrum ß-lactamases. Overall, the data provide cross-comparable resistome information to establish regional trends in support of international surveillance activities and potentially guide geospatially informed medical care.


Assuntos
Campylobacter/genética , Diarreia/microbiologia , Resistência Microbiana a Medicamentos , Escherichia coli Enteropatogênica/genética , Genes Bacterianos , Salmonella/genética , Shigella/genética , Antibacterianos/toxicidade , Campylobacter/efeitos dos fármacos , Campylobacter/isolamento & purificação , Campylobacter/patogenicidade , Diarreia/epidemiologia , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/patogenicidade , Humanos , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Salmonella/patogenicidade , Shigella/efeitos dos fármacos , Shigella/isolamento & purificação , Shigella/patogenicidade
8.
Int J Mol Sci ; 21(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121349

RESUMO

A dramatic increase in global antimicrobial resistance (AMR) has been well documented. Of particular concern is the dearth of information regarding the spectrum and prevalence of AMR within Category A Select Agents. Here, we performed a survey of horizontally and vertically transferred AMR determinants among Category A agents and their near neighbors. Microarrays provided broad spectrum screening of 127 Francisella spp., Yersinia spp., and Bacillus spp. strains for the presence/absence of 500+ AMR genes (or families of genes). Detecting a broad variety of AMR genes in each genus, microarray analysis also picked up the presence of an engineered plasmid in a Y. pestis strain. High resolution melt analysis (HRMA) was also used to assess the presence of quinolone resistance-associated mutations in 100 of these strains. Though HRMA was able to detect resistance-causing point mutations in B. anthracis strains, it was not capable of discriminating these point mutations from other nucleotide substitutions (e.g., arising from sequence differences in near neighbors). Though these technologies are well-established, to our knowledge, this is the largest survey of Category A agents and their near-neighbor species for genes covering multiple mechanisms of AMR.


Assuntos
Infecções Bacterianas/genética , Farmacorresistência Bacteriana/genética , Quinolonas/uso terapêutico , Bacillus/efeitos dos fármacos , Bacillus/genética , Bacillus/patogenicidade , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Francisella/efeitos dos fármacos , Francisella/genética , Francisella/patogenicidade , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação/genética , Plasmídeos/genética , Yersinia/efeitos dos fármacos , Yersinia/genética , Yersinia/patogenicidade
10.
Commun Biol ; 3(1): 67, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054971

RESUMO

Snorkelers in mangrove forest waters inhabited by the upside-down jellyfish Cassiopea xamachana report discomfort due to a sensation known as stinging water, the cause of which is unknown. Using a combination of histology, microscopy, microfluidics, videography, molecular biology, and mass spectrometry-based proteomics, we describe C. xamachana stinging-cell structures that we term cassiosomes. These structures are released within C. xamachana mucus and are capable of killing prey. Cassiosomes consist of an outer epithelial layer mainly composed of nematocytes surrounding a core filled by endosymbiotic dinoflagellates hosted within amoebocytes and presumptive mesoglea. Furthermore, we report cassiosome structures in four additional jellyfish species in the same taxonomic group as C. xamachana (Class Scyphozoa; Order Rhizostomeae), categorized as either motile (ciliated) or nonmotile types. This inaugural study provides a qualitative assessment of the stinging contents of C. xamachana mucus and implicates mucus containing cassiosomes and free intact nematocytes as the cause of stinging water.


Assuntos
Muco/metabolismo , Cifozoários/citologia , Cifozoários/fisiologia , Animais , Mordeduras e Picadas , Imuno-Histoquímica , Cifozoários/anatomia & histologia , Cifozoários/ultraestrutura , Toxinas Biológicas
11.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836580

RESUMO

Melanin is a pigment produced by organisms throughout all domains of life. Due to its unique physicochemical properties, biocompatibility, and biostability, there has been an increasing interest in the use of melanin for broad applications. In the vast majority of studies, melanin has been either chemically synthesized or isolated from animals, which has restricted its use to small-scale applications. Using bacteria as biocatalysts is a promising and economical alternative for the large-scale production of biomaterials. In this study, we engineered the marine bacterium Vibrio natriegens, one of the fastest-growing organisms, to synthesize melanin by expressing a heterologous tyrosinase gene and demonstrated that melanin production was much faster than in previously reported heterologous systems. The melanin of V. natriegens was characterized as a polymer derived from dihydroxyindole-2-carboxylic acid (DHICA) and, similarly to synthetic melanin, exhibited several characteristic and useful features. Electron microscopy analysis demonstrated that melanin produced from V. natriegens formed nanoparticles that were assembled as "melanin ghost" structures, and the photoprotective properties of these particles were validated by their protection of cells from UV irradiation. Using a novel electrochemical reverse engineering method, we observed that melanization conferred redox activity to V. natriegens Moreover, melanized bacteria were able to quickly adsorb the organic compound trinitrotoluene (TNT). Overall, the genetic tractability, rapid division time, and ease of culture provide a set of attractive properties that compare favorably to current E. coli production strains and warrant the further development of this chassis as a microbial factory for natural product biosynthesis.IMPORTANCE Melanins are macromolecules that are ubiquitous in nature and impart a large variety of biological functions, including structure, coloration, radiation resistance, free radical scavenging, and thermoregulation. Currently, in the majority of investigations, melanins are either chemically synthesized or extracted from animals, which presents significant challenges for large-scale production. Bacteria have been used as biocatalysts to synthesize a variety of biomaterials due to their fast growth and amenability to genetic engineering using synthetic biology tools. In this study, we engineered the extremely fast-growing bacterium V. natriegens to synthesize melanin nanoparticles by expressing a heterologous tyrosinase gene with inducible promoters. Characterization of the melanin produced from V. natriegens-produced tyrosinase revealed that it exhibited physical and chemical properties similar to those of natural and chemically synthesized melanins, including nanoparticle structure, protection against UV damage, and adsorption of toxic compounds. We anticipate that producing and controlling melanin structures at the nanoscale in this bacterial system with synthetic biology tools will enable the design and rapid production of novel biomaterials for multiple applications.


Assuntos
Bacillus megaterium/genética , Biopolímeros/metabolismo , Melaninas/biossíntese , Microrganismos Geneticamente Modificados/metabolismo , Monofenol Mono-Oxigenase/genética , Vibrio/metabolismo , Biopolímeros/genética , Microrganismos Geneticamente Modificados/genética , Monofenol Mono-Oxigenase/metabolismo , Vibrio/genética
12.
Mar Drugs ; 17(12)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801279

RESUMO

A recent goal of synthetic biology has been to identify new chassis that provide benefits lacking in model organisms. Vibrio natriegens is a marine Gram-negative bacterium which is an emergent synthetic biology chassis with inherent benefits: An extremely fast growth rate, genetic tractability, and the ability to grow on a variety of carbon sources ("feedstock flexibility"). Given these inherent benefits, we sought to determine its potential to heterologously produce natural products, and chose beta-carotene and violacein as test cases. For beta-carotene production, we expressed the beta-carotene biosynthetic pathway from the sister marine bacterium Vibrio campbellii, as well as the mevalonate biosynthetic pathway from the Gram-positive bacterium Lactobacillus acidophilus to improve precursor abundance. Violacein was produced by expressing a biosynthetic gene cluster derived from Chromobacterium violaceum. Not only was V. natriegens able to heterologously produce these compounds in rich media, illustrating its promise as a new chassis for small molecule drug production, but it also did so in minimal media using a variety of feedstocks. The ability for V. natriegens to produce natural products with multiple industrially-relevant feedstocks argues for continued investigations into the production of more complex natural products in this chassis.


Assuntos
Produtos Biológicos/metabolismo , Indóis/metabolismo , Vibrio/metabolismo , beta Caroteno/biossíntese , Vias Biossintéticas , Chromobacterium/genética , Família Multigênica , Biologia Sintética , Vibrio/genética
13.
Front Microbiol ; 10: 2738, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866960

RESUMO

The Bay of Bengal (BoB) is the largest bay in the world and presents a unique marine environment that is subjected to severe weather, a distinct hydrographic regime and a large anthropogenic footprint. Despite these features and the BoB's overall economic significance, this ecosystem and its microbiome remain among the most underexplored in the world. In this study, amplicon-based microbial profiling was used to assess the bacterial, archaeal, and micro-eukaryotic content of unperturbed planktonic and biofilm/biofouling communities within the BoB. Planktonic microbial communities were collected during the Southwest monsoon season from surface (2 m), subsurface (75 m), and deep-sea (1000 m) waters from six south-central BoB locations and were compared to concomitant mature biofouling communities from photic-zone subsurface moorings (∼75 m). The results demonstrated vertical stratification of all planktonic communities with geographic variations disappearing in the deep-sea environment. Planktonic microbial diversity was found to be driven by different members of the community, with the most dominant phylotypes driving the diversity of the photic zone and rarer species playing a more influential role within the deep-sea. Geographic variability was not observed in the co-located biofouling microbiomes, but community composition and variability was found to be driven by depth and the presence of macro-fouling and photosynthetic organisms. Overall, these results provide much needed baselines for longitudinal assessments that can be used to monitor the health and evolution of this dynamic and critically important marine environment.

14.
Anal Biochem ; 585: 113405, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445900

RESUMO

Microarrays are a valuable tool for analysis of both bacterial and eukaryotic nucleic acids. As many of these applications use non-specific amplification to increase sample concentration prior to analysis, the methods used to fragment and label large amplicons are important to achieve the desired analytical selectivity and specificity. Here, we used eight sequenced ESKAPE pathogens to determine the effect of two methods of whole genome amplicon fragmentation and three methods of subsequent labeling on microarray performance; nick translation was also assessed. End labeling of both initial DNase I-treated and sonication-fragmented amplicons failed to provide detectable material for a significant number of sequence-confirmed genes. However, processing of amplicons by nick translation, or by sequential fragmentation and labeling by Universal Labeling System or Klenow fragment/random primer provided good sensitivity and selectivity, with marginally better results obtained by Klenow fragment labeling. Nick-translation provided 91-100% sensitivity and 100% specificity in the tested strains, requiring half as many manipulations and less than 4h to process samples for hybridization; full sample processing from whole genome amplification to final data analysis could be performed in less than 10h. The method of template denaturation before amplification did affect detection sensitivity/selectivity of nick-labeled amplicons, however.


Assuntos
Bactérias/genética , DNA Bacteriano/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais , Desoxirribonuclease I/metabolismo , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Sensibilidade e Especificidade , Coloração e Rotulagem
15.
ACS Synth Biol ; 8(9): 2069-2079, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31419124

RESUMO

The fast-growing nonmodel marine bacterium Vibrio natriegens has recently garnered attention as a host for molecular biology and biotechnology applications. In order to further its capabilities as a synthetic biology chassis, we have characterized a wide range of genetic parts and tools for use in V. natriegens. These parts include many commonly used resistance markers, promoters, ribosomal binding sites, reporters, terminators, degradation tags, origin of replication sequences, and plasmid backbones. We have characterized the behavior of these parts in different combinations and have compared their functionality in V. natriegens and Escherichia coli. Plasmid stability over time, plasmid copy numbers, and production load on the cells were also evaluated. Additionally, we tested constructs for chemical and optogenetic induction and characterized basic engineered circuit behavior in V. natriegens. The results indicate that, while most parts and constructs work similarly in the two organisms, some deviate significantly. Overall, these results will serve as a primer for anyone interested in engineering V. natriegens and will aid in developing more robust synthetic biology principles and approaches for this nonmodel chassis.


Assuntos
Biologia Sintética/métodos , Vibrio/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Variações do Número de Cópias de DNA , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ribossomos/metabolismo , Vibrio/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-30701232

RESUMO

We present the complete genome sequence of Vibrio campbellii DS40M4, assembled from Illumina and Oxford Nanopore data. This effort improves upon a previous draft assembly to resolve this organism's two-chromosome and one-plasmid genetic structure and to provide valuable context for evaluating the gene arrangement and evolution of this species.

17.
Genome Announc ; 6(20)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773633

RESUMO

Vibrio campbellii is a pathogen of aquatic animals and has been proposed as a bacterial partner in the formation of bioluminescent milky seas. We present here the complete genome sequences assembled from Illumina and Oxford Nanopore data for two bioluminescent Vibrio campbellii strains (BoB-53 and BoB-90) isolated from biofouled moorings in the Bay of Bengal.

18.
Biofouling ; 34(2): 162-172, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29347829

RESUMO

Grooming is a proactive method to keep a ship's hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.


Assuntos
Incrustação Biológica/prevenção & controle , Diatomáceas/crescimento & desenvolvimento , Fricção , Navios , Biofilmes/crescimento & desenvolvimento , Propriedades de Superfície
19.
Genome Announc ; 5(42)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051254

RESUMO

Here we present the complete genome sequence of Lactobacillus acidophilus ATCC 53544. The assembly contains 1,991,906 bp and is 99.7% similar to L. acidophilus NCFM. This strain was isolated from a rectal swab specimen of an infant and has previously been used as a feed supplement for animals.

20.
PLoS One ; 12(6): e0178880, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575064

RESUMO

We sought to determine the genetic and phenotypic antimicrobial resistance (AMR) profiles of commensal Klebsiella spp. circulating in Kenya by testing human stool isolates of 87 K. pneumoniae and three K. oxytoca collected at eight locations. Over one-third of the isolates were resistant to ≥3 categories of antimicrobials and were considered multidrug-resistant (MDR). We then compared the resistance phenotype to the presence/absence of 238 AMR genes determined by a broad-spectrum microarray and PCR. Forty-six genes/gene families were identified conferring resistance to ß-lactams (ampC/blaDHA, blaCMY/LAT, blaLEN-1, blaOKP-A/OKP-B1, blaOXA-1-like family, blaOXY-1, blaSHV, blaTEM, blaCTX-M-1 and blaCTX-M-2 families), aminoglycosides (aac(3)-III, aac(6)-Ib, aad(A1/A2), aad(A4), aph(AI), aph3/str(A), aph6/str(B), and rmtB), macrolides (mac(A), mac(B), mph(A)/mph(K)), tetracyclines (tet(A), tet(B), tet(D), tet(G)), ansamycins (arr), phenicols (catA1/cat4, floR, cmlA, cmr), fluoroquinolones (qnrS), quaternary amines (qacEΔ1), streptothricin (sat2), sulfonamides (sul1, sul2, sul3), and diaminopyrimidines (dfrA1, dfrA5, dfrA7, dfrA8, dfrA12, dfrA13/21/22/23 family, dfrA14, dfrA15, dfrA16, dfrA17). This is the first profile of genes conferring resistance to multiple categories of antimicrobial agents in western and central Kenya. The large number and wide variety of resistance genes detected suggest the presence of significant selective pressure. The presence of five or more resistance determinants in almost two-thirds of the isolates points to the need for more effective, targeted public health policies and infection control/prevention measures.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Fezes/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genes Bacterianos , Humanos , Lactente , Quênia/epidemiologia , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...